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Presentation Notes
Welcome! Thanks for taking the course!



Recap

• Lecture 1 – OD Concepts posted here
– State estimation (what orbit determination is)
– Linearization and state transition matrix

• Problem due Wed, 13 June
– Quick review at beginning of this lecture

• Questions
– Post them to lecture page

• Additional notes
– Website revamp
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https://simpsonaerospace.wordpress.com/2018/06/06/lecture1-orbitdeterminationconcepts/


Agenda

• Problem review

• Two body problem
– Gravitational force
– Relative motion
– n-body problem

• Orbital elements and 𝑟𝑟/𝑣⃑𝑣
– Conic sections
– Coordinate systems

• Perturbing accelerations
– Conservative
– Gravitational models

• Practice problem
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Problem review

4

Time Range
0.0 7.000000000
1.0 8.003905970
2.0 8.944271910
3.0 9.801147892
4.0 10.630145813

Time 0.0 1.0 2.0 3.0 4.0

Range, 𝜌𝜌 7.000000000 8.003905970 8.944271910 9.801147892 10.630145813

Calculated Range, �𝜌𝜌 9.013878189 9.73203473 10.6004717 11.5815586 12.66688596

𝑋𝑋0 1.5 3.7 5.9 8.1 10.3

𝑌𝑌0 10.0 10.35 10.4 10.15 9.6

𝑋̇𝑋0 2.2 2.2 2.2 2.2 2.2

𝑌̇𝑌0 0.5 0.2 -0.1 -0.4 -0.7

𝑔𝑔 0.3 0.3 0.3 0.3 0.3

𝑋𝑋𝑠𝑠 1.0 1.0 1.0 1.0 1.0

𝑌𝑌𝑠𝑠 1.0 1.0 1.0 1.0 1.0



Two body problem – Gravitational Force (1/2)

• Newton’s Law of Universal Gravitation

𝐹⃗𝐹 = −𝐺𝐺𝐺𝐺𝐺𝐺𝑟𝑟2
𝑟𝑟
𝑟𝑟

• Assumptions
– Two point masses/bodies are spherically symmetric
– Gravitational force propagates instantaneously (No relativistic effects)
– Only forces in the system are the gravitational attractions

• Gravitational constant, 𝐺𝐺 = 6.6742 × 10−20 km3

kg−s2
• Earth’s estimated mass, 𝑀𝑀⊕ = 5.9722 × 1024 kg

• Gravitational parameter, 𝜇𝜇 = 𝑀𝑀⊕𝐺𝐺 = 3.98 × 105 km3

s2
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Two body problem – Gravitational Force (2/2)

• Gravitational acceleration, 𝑔𝑔

𝑔𝑔 ≡
𝐹⃗𝐹
𝑚𝑚

= −𝐺𝐺𝐺𝐺𝑟𝑟2 = − 𝜇𝜇
𝑟𝑟2

• Field acceleration on surface of uniformly dense sphere gives 𝑔𝑔0
– Earth’s radius is 6378 km

𝑔𝑔0 = − 𝜇𝜇
𝑟𝑟2 = −

3.98 × 105 km3

s2
(6378 km)2 ≅ −9.81 m/s2
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Two body problem – Relative motion

• When 𝑀𝑀 ≫ 𝑚𝑚
𝜇𝜇 ≅ 𝐺𝐺(𝑀𝑀 + 𝑚𝑚) = 𝐺𝐺𝐺𝐺

• Acceleration of point mass, 𝑚𝑚

̈⃗𝑟𝑟 +
𝜇𝜇
𝑟𝑟3

𝑟𝑟 = 0
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Two body problem – n-body problem

• Assume a system of n-bodies
– 𝑚𝑚1,𝑚𝑚2, … ,𝑚𝑚𝑛𝑛 and we want to examine 𝑚𝑚𝑖𝑖
– Sum the vectors acting on 𝑚𝑚𝑖𝑖

𝐹⃑𝐹𝑔𝑔 = −𝐺𝐺𝑚𝑚𝑖𝑖 �
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖

𝑛𝑛
𝑚𝑚𝑗𝑗

𝑟𝑟𝑖𝑖𝑖𝑖3
𝑟𝑟𝑗𝑗𝑗𝑗

• Adding all other forces

̈⃑𝑟𝑟𝑖𝑖 =
𝐹⃑𝐹𝑔𝑔 + 𝐹⃑𝐹other

𝑚𝑚𝑖𝑖
− ̇⃑𝑟𝑟𝑖𝑖

𝑚̇𝑚𝑖𝑖

𝑚𝑚𝑖𝑖

• Second order, nonlinear, vector, differential equation of motion
– Not solved in present form
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Orbital elements and 𝑟𝑟/𝑣⃑𝑣 – Conic Sections (1/4)

• Gravitational field is conservative
– Object moving under influence of 𝑔𝑔 only exchanges KE for PE
– Specific mechanical energy is constant for each orbit

– 𝜀𝜀 = 𝑣𝑣2
2 −

𝜇𝜇
𝑟𝑟

• Specific angular momentum is constant
– ℎ = 𝑟𝑟 × 𝑣⃑𝑣
– Position and velocity act only in orbital plane

– Flight path angle, 𝜙𝜙 = acos ℎ
𝑟𝑟𝑟𝑟

– Zenith angle, 𝛾𝛾 = asin ℎ
𝑟𝑟𝑟𝑟
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Orbital elements and 𝑟𝑟/𝑣⃑𝑣 – Conic Sections (2/4)

• Conic sections, family of curves, only trajectories for orbit
– Circle, 𝑒𝑒 = 0, ellipse, 0 < 𝑒𝑒 < 1, parabola, 𝑒𝑒 = 1, hyperbola, 𝑒𝑒 > 1
– In polar coordinates, 𝑟𝑟 = 𝑝𝑝

1+𝑒𝑒 cos 𝜈𝜈
– Semilatus rectum, 𝑝𝑝 = 𝑎𝑎 1 − 𝑒𝑒2 = ℎ2/𝜇𝜇

– Eccentricity, 𝑒𝑒 = 1 + 2𝜀𝜀ℎ2

𝜇𝜇2

– The focus of the conic orbit is the center of the central body
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Orbital elements and 𝑟𝑟/𝑣⃑𝑣 – Conic Sections (3/4)

• Six parameters needed to describe an orbit
– Classical orbital elements 

– 𝑎𝑎, semi-major axis
– 𝑒𝑒, eccentricity
– 𝑖𝑖, inclination
– Ω, longitude of the ascending node
– 𝜔𝜔, argument of periapsis
– T, time of periapsis passage
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Orbital elements and 𝑟𝑟/𝑣⃑𝑣 – Conic Sections (4/4)
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Orbital elements and 𝑟𝑟/𝑣⃑𝑣 – Coordinate Systems (1/2)

• Heliocentric-Ecliptic
– Origin at center of Sun
– Fundamental plane is ecliptic or Earth’s orbital plane about the Sun
– Used as inertial reference frame when defined by an epoch

• Geocentric-Equatorial
– Origin at center of Earth
– Fundamental plane is equatorial plane
– Not fixed to Earth

• Right Ascension-Declination
– Origin at center of Earth or point on surface of Earth
– Fundamental plane is equatorial plane fixed to the celestial sphere
– Star positions known accurately, satellite in background
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Orbital elements and 𝑟𝑟/𝑣⃑𝑣 – Coordinate Systems (2/2)

• Topocentric-Horizon Coordinate System
– Fundamental plane is horizon
– X points South, Y points East, and Z points up 
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Perturbing accelerations – Conservative (1/2)

• Acceleration of satellite with perturbing accelerations

̈⃗𝑟𝑟 +
𝜇𝜇
𝑟𝑟3

𝑟𝑟 = ̈⃗𝑟𝑟𝑝𝑝
• Perturbations are conservative if only a function of position

– Satellite does not lose nor gain mechanical energy
– Exchanges energy between kinetic energy and potential energy
– Specific mechanical energy is unique for each orbit

• Examples of non-conservative perturbations (changes to 𝑟𝑟, 𝑣⃗𝑣 )
– Atmospheric drag
– Outgassing
– Tidal effects
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Perturbing accelerations – Conservative (2/2)

• Examples of conservative perturbations 
– N-body (celestial body) attractions
– Nonspherical celestial bodies
– Solar-radiation pressure

• Focus on the gravitational field effects
– Nonspherical celestial bodies
– Tidal effects
– N-body attractions
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Perturbing accelerations – Gravitational Models (1/6)

• Terrestrial Measurements
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Perturbing accelerations – Gravitational Models (2/6)
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Perturbing accelerations – Gravitational Models (3/6)
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Perturbing accelerations – Gravitational Models (4/6)
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Perturbing accelerations – Gravitational Models (5/6)
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• Earth’s Oblateness (𝐽𝐽2,0)
– Bulging at the equator
– ~400 times larger than the next term
– When included in satellite orbits maintains reasonable accuracy
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Perturbing accelerations – Gravitational Models (6/6)
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• Earth’s bulge at equator pulls satellite down faster
– Exerts a force component toward the equator

• Satellite reaches equator short of point for spherical Earth
– East-bound satellite goes west
– West-bound satellite goes east

Ω̇ = −
9.9358
1 − 𝑒𝑒2 2

𝑟𝑟𝑒𝑒𝑒𝑒
𝑟𝑟𝑒𝑒𝑒𝑒 + �ℎ

3.5

cos 𝑖𝑖 [deg/mean solar day]

• Secular motion of perigee too
– Force is no longer proportional to inverse square radius

𝜔̇𝜔 =
9.9358
1 − 𝑒𝑒2 2

𝑟𝑟𝑒𝑒𝑒𝑒
𝑟𝑟𝑒𝑒𝑒𝑒 + �ℎ

3.5

2 −
5
2
sin2 𝑖𝑖 [deg/mean solar day]
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LOST IN SPACE
Practice problem: Gibbsian method
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