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SUMMARY: 
 
OVERVIEW: 
A random variable 𝑋𝑋 is a real-valued function associated with the chance outcome (observation of result) of an 
experiment. Each possible observation is (in our notation) denoted 𝑥𝑥. All possible values 𝑥𝑥𝑖𝑖 are the domain of 𝑋𝑋.  
 
What types of random variables are there? 
There are two types, discrete and continuous. Think of discrete like a list of numbers or the order runners finished in 
a race. The possible outcomes of 𝑋𝑋 are a set of finite real numbers. Continuous is an interval on a real line like the 
length of a student’s desk in inches. The probability at a point is 0 (because the area under the curve is 0 at a point). 
 
What are the rules governing probability? 
To answer this we turn to the axioms of probability. If 𝑆𝑆 is the sample space (set of all possible outcomes) then let 𝐴𝐴 
be the subset of points of the set 𝑆𝑆 (i.e. a collection of one or more possible trials, like a sample). Consider a die; 𝑠𝑠 =
1, 2, 3, 4, 5, 6 and a subset may be 𝑎𝑎 = 3. The numerical probability of event 𝐴𝐴 occurring is denoted 𝑝𝑝(𝐴𝐴). Then we 
can consider these three axioms which will govern our further attempts at illuminating the use of probability in 
determining orbits.  

1. 𝑝𝑝(𝐴𝐴) ≥ 0 
2. 𝑝𝑝(𝑆𝑆) = 1 
3. 𝑝𝑝(𝐴𝐴 + 𝐵𝐵) = 𝑝𝑝(𝐴𝐴) + 𝑝𝑝(𝐵𝐵); provided 𝐴𝐴 and 𝐵𝐵 are mutually exclusive, 𝑃𝑃(𝐴𝐴𝐴𝐴) = 0. 

 
What if 𝐴𝐴 and 𝐵𝐵 are not mutually exclusive? 

𝑝𝑝(𝐴𝐴 + 𝐵𝐵) = 𝑝𝑝(𝐴𝐴) + 𝑝𝑝(𝐵𝐵) − 𝑝𝑝(𝐴𝐴𝐴𝐴) 
What is the complementary rule? 
The complementary rule compliments 𝑝𝑝(𝐴𝐴). The chance of 𝑝𝑝(𝐴𝐴) not occurring is given by 𝑝𝑝(𝐴̅𝐴) = 1 − 𝑝𝑝(𝐴𝐴).  
 
And? Or? What do they mean? 
Consider a Venn diagram. Where circle 𝐴𝐴 and circle 𝐵𝐵 intersect is the probability that 𝐴𝐴 and 𝐵𝐵 occur, 𝑝𝑝(𝐴𝐴𝐴𝐴). This is 
denoted as 𝐴𝐴 ∩ 𝐵𝐵 = 𝐴𝐴𝐴𝐴. The possibility of 𝐴𝐴 or 𝐵𝐵 occurring is the union of the two Venn diagrams for the whole 
sample space, 𝑝𝑝(𝐴𝐴 + 𝐵𝐵). This is denoted as 𝐴𝐴 ∪ 𝐵𝐵 = 𝐴𝐴 + 𝐵𝐵.  
 
Okay, I get how to get if A or B occurs but what about both occurring? 
In order to get to 𝑝𝑝(𝐴𝐴𝐴𝐴) from 𝑝𝑝(𝐴𝐴) and 𝑝𝑝(𝐵𝐵) we need to know if 𝑝𝑝(𝐴𝐴) and 𝑝𝑝(𝐵𝐵) are independent. Two events are 
independent if the probability that an event occurs is the same regardless if the first event occurred. 𝑝𝑝�𝐴𝐴 𝐵𝐵� � = 𝑝𝑝(𝐴𝐴) 
is the required condition for independence 𝑝𝑝(𝐴𝐴𝐴𝐴) = 𝑝𝑝(𝐴𝐴)𝑝𝑝(𝐵𝐵). If the events are not independent then; 𝑝𝑝(𝐴𝐴 𝐵𝐵⁄ ) =
𝑝𝑝(𝐴𝐴𝐴𝐴)/𝑝𝑝(𝐵𝐵). 
 
You said the probability at a point is 0 for a continuous random variable. How do I find the probability for a 
continuous random variable, like say the measured length of my desk? 



For a continuous random variable we assume that all events of practical interest will be represented by intervals on 
the real line. A probability density function, 𝑓𝑓(𝑥𝑥), which represents the probability of 𝑋𝑋 assuming a value on the 
interval (𝑥𝑥, 𝑥𝑥 + 𝑑𝑑𝑑𝑑). 

𝑝𝑝(𝑥𝑥 ≤ 𝑋𝑋 ≤ 𝑥𝑥 + 𝑑𝑑𝑑𝑑) = 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 
 
The rules we mentioned earlier, that the probability of a subset is equal to or greater than 0, the probability of the 
entire sample space is 1, and the probability of event A or B is equal to their summed individual probabilities if 
they’re mutually exclusive: How do they matter here? 
Well clearly we need to update our definitions to include the idea of the probability density function 𝑓𝑓(𝑥𝑥). These 
axioms haven’t changed, just their representation: 

1. 𝑓𝑓(𝑥𝑥) ≥ 0 
2. ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 = 1 ∞

−∞  

3. 𝑝𝑝(𝑎𝑎 ≤ 𝑋𝑋 ≤ 𝑐𝑐) =  ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑𝑐𝑐
𝑎𝑎 = ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑𝑏𝑏

𝑎𝑎 + ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑𝑐𝑐
𝑏𝑏  

For 3 just think of it as increasing the interval.  
 
Great, the probability density function gives us the probability based on the clumping of the data. Well does it 
describe the distribution of the continuous random variable X? 
No! The probability density function just measures the “density,” or clumping of the data to give us a probability 
estimate. The distribution function, 𝐹𝐹(𝑥𝑥) describes the actual distribution. 𝑑𝑑𝑑𝑑(𝑥𝑥)

𝑑𝑑𝑑𝑑
= 𝑓𝑓(𝑥𝑥) so that if we are interested 

in the event 𝑋𝑋 ≤ 𝑥𝑥 then 𝐹𝐹(𝑥𝑥) = 𝑃𝑃(𝑋𝑋 ≤ 𝑥𝑥) =  ∫ 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑𝑥𝑥
−∞ . It follows that 𝐹𝐹(−∞) = 0 and 𝐹𝐹(∞) = 1. We can 

confirm this using axioms 1 and 2; 0 ≤ 𝐹𝐹(𝑥𝑥) ≤ 1. 𝐹𝐹(𝑥𝑥) is also monotonically increasing.  
 
How is that useful? 
Well the distribution function is the actual result returned when we evaluate the probability density function like in 
the third axiom. For example, 𝑝𝑝(𝑎𝑎 ≤ 𝑋𝑋 ≤ 𝑏𝑏) =  ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑𝑏𝑏

𝑎𝑎 = 𝐹𝐹(𝑏𝑏) − 𝐹𝐹(𝑎𝑎).  
 
Okay. What are some useful ways to talk about the probability distributions? 
Let’s start with an easy one. The expected value or the mean of 𝑋𝑋 is 𝐸𝐸(𝑋𝑋). We find 𝐸𝐸(𝑋𝑋) =  ∫ 𝑥𝑥𝑥𝑥(𝑥𝑥)𝑑𝑑𝑑𝑑∞

−∞ .  
A more general way to think about this is if we consider a second random variable 𝑌𝑌 that is a function of 𝑋𝑋 so 𝑌𝑌 =
𝑔𝑔(𝑋𝑋). Then 𝐸𝐸[𝑔𝑔(𝑋𝑋)] = ∫ 𝑔𝑔(𝑥𝑥)𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑∞

−∞ .  
 
So the mean is just the expected value of the continuous random variable. What about variance or standard 
deviation? 
Going back to our explanation of the expected value: 𝐸𝐸(𝑋𝑋) is sometimes written as 𝜆𝜆1 or 𝜆𝜆 and is called the 
arithmetic mean of 𝑋𝑋. Geometrically, 𝜆𝜆1 is one of a number of possible devices for locating the centroid (center) of 
the probability distribution with respect to the origin.  
The 𝑘𝑘th moment of 𝑋𝑋 about the origin is 𝐸𝐸[𝑋𝑋𝑘𝑘] =  𝜆𝜆𝑘𝑘 =  ∫ 𝑥𝑥𝑘𝑘𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑∞

−∞ . The 𝑘𝑘th moment of 𝑋𝑋 about the mean 𝜆𝜆1 is 

𝜇𝜇𝑘𝑘 = 𝐸𝐸(𝑋𝑋 − 𝜆𝜆1)𝑘𝑘 =  ∫ (𝑥𝑥 − 𝜆𝜆1)𝑘𝑘𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑∞
−∞ . For 𝑘𝑘 = 1,  𝜇𝜇1 = 0. The variance is difference from mean, right? So for 

𝑘𝑘 = 2, 𝜇𝜇2 =  𝜎𝜎2, or the variance of 𝑋𝑋 or the second moment of 𝑋𝑋 about the mean. It is one measure of the dispersion 
of the distribution about its mean value.  
 
Why is this important? 
In guidance and estimation applications we are most concerned with the first two moments, namely the mean and 
variance. Future values for the state of the dynamic system can be obtained by propagating the joint density function 
𝑓𝑓(𝑢𝑢, 𝑣𝑣) forward in time and using it to calculate mean and variance. The equations for propagating the mean and 
variance of a random vector 𝑋𝑋 are discussed in Section 4.8 of the text.  



What is a Moment Generating Function? 
A moment generating function is an expected value function that generates the moments 𝜆𝜆0, 𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆𝑛𝑛 of the 

random variable 𝑋𝑋. In other words, 𝑔𝑔(𝑋𝑋) = 𝑒𝑒𝜃𝜃𝜃𝜃,𝐸𝐸[𝑔𝑔(𝑋𝑋)] =  ∫ 𝑔𝑔(𝑥𝑥)𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑∞
−∞ . Since 𝑒𝑒𝜃𝜃𝜃𝜃 = 1 + 𝜃𝜃𝜃𝜃 + (𝜃𝜃𝜃𝜃)2

2!
+ ⋯+

(𝜃𝜃𝜃𝜃)𝑛𝑛

𝑛𝑛!
 we see that 𝐸𝐸�𝑒𝑒𝜃𝜃𝜃𝜃� = 𝜆𝜆0 + 𝜃𝜃𝜆𝜆1 + 𝜃𝜃2𝜆𝜆2

2!
+ ⋯𝜃𝜃𝑛𝑛𝜆𝜆𝑛𝑛

𝑛𝑛!
. The moment generating function 𝐸𝐸�𝑒𝑒𝜃𝜃𝜃𝜃� = 𝑀𝑀𝑋𝑋(𝜃𝜃) we can 

use to find moments about the origin by 𝜕𝜕
𝑘𝑘𝑀𝑀𝑋𝑋(𝜃𝜃)
𝜕𝜕𝜃𝜃𝑘𝑘

|𝜃𝜃=0 = 𝜆𝜆𝑘𝑘 . We can replace 𝑥𝑥 with any function ℎ(𝑋𝑋)to find the 
moment generating function for that function. So if we wanted to find the moments about the mean, ℎ(𝑋𝑋) =  𝑋𝑋 −
𝜆𝜆1 then 𝑀𝑀𝑋𝑋−𝜆𝜆1(𝜃𝜃) = 𝑒𝑒−𝜃𝜃𝜆𝜆1𝑀𝑀𝑋𝑋(𝜃𝜃). 
 
What shape does the probability density function take? 
The easy answer is whatever the slope of the distribution function 𝐹𝐹(𝑋𝑋) takes. Really, there are two important ones 
for this book: The uniform (rectangular) and the normal (Gaussian) distribution.  
The uniform distribution occurs when 𝑋𝑋 has equal probability over the range 𝑎𝑎 ≤ 𝑋𝑋 ≤ 𝑏𝑏. We can write the density 
function as 𝑓𝑓(𝑥𝑥) = 1

𝑏𝑏−𝑎𝑎
, 𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏 and 0 elsewhere. The first two moments: 𝐸𝐸(𝑋𝑋) =  ∫ 𝑥𝑥𝑥𝑥(𝑥𝑥)𝑑𝑑𝑑𝑑𝑏𝑏

𝑎𝑎 = ∫ 𝑥𝑥
𝑏𝑏−𝑎𝑎

𝑑𝑑𝑑𝑑𝑏𝑏
𝑎𝑎 =

� 𝑥𝑥2

2(𝑏𝑏−𝑎𝑎)
�
𝑎𝑎

𝑏𝑏
= 𝑎𝑎+𝑏𝑏

2
 and 𝜎𝜎2 = (𝑏𝑏−𝑎𝑎)2

12
=  ∫ [𝑥𝑥 − 𝐸𝐸(𝑋𝑋)]2𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑𝑏𝑏

𝑎𝑎 . The reason we care about the uniform distribution is its 

utility. We can elicit properties of a continuous probability distribution by converting first to a uniform distribution 
and then into a given continuous distribution.  

The Gaussian distribution is the most commonly found distribution found as 𝑓𝑓(𝑥𝑥) = 1
√2𝜋𝜋𝜋𝜋

exp �− 1
2
�𝑥𝑥−𝑎𝑎

𝑏𝑏
�
2
� over 

−∞ ≤ 𝑥𝑥 ≤ ∞ and 𝑏𝑏 > 0. The moment generating function 𝑀𝑀𝑋𝑋(𝜃𝜃) = exp �𝜃𝜃
2𝑏𝑏2

2
+ 𝑎𝑎𝑎𝑎�. 𝜆𝜆1 = 𝑎𝑎, 𝜎𝜎2 = 𝑏𝑏2. 

Confidence intervals include for 1𝜎𝜎, 2𝜎𝜎, and 3𝜎𝜎, 𝑝𝑝 = 0.68268, 0.95449, 0.99730, respectively.  
 
Okay, but I want to estimate position and velocity. How do I get there? 
We’re getting closer. First we need to cover two random variables. We’ve covered the necessary background for 
one, now let’s see how two interact.  

𝐹𝐹(𝑥𝑥𝑜𝑜 ,𝑦𝑦𝑜𝑜) = 𝑝𝑝{𝑋𝑋 ≤ 𝑥𝑥𝑜𝑜 ,𝑌𝑌 ≤ 𝑦𝑦𝑜𝑜} 
Returning to our distribution function properties: 
For all 𝑥𝑥,𝑦𝑦 the distribution function 0 ≤ 𝐹𝐹(𝑥𝑥,𝑦𝑦) ≤ 1. Like before, 𝐹𝐹(−∞, 𝑦𝑦) = 𝐹𝐹(𝑥𝑥,−∞) = 0 and 𝐹𝐹(∞,∞) = 1.  
But when 𝐹𝐹(∞,𝑦𝑦) = 𝑝𝑝(𝑌𝑌 ≤ 𝑦𝑦) and 𝐹𝐹(𝑥𝑥,∞) = 𝑝𝑝(𝑋𝑋 ≤ 𝑥𝑥). 
 

The distribution function is the integral of the area element and the density function. 𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝜕𝜕2𝐹𝐹(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

 or 𝑝𝑝(𝑎𝑎 ≤

𝑋𝑋 ≤ 𝑏𝑏, 𝑐𝑐 ≤ 𝑌𝑌 ≤ 𝑑𝑑) =  ∫ ∫ 𝑓𝑓(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑏𝑏
𝑎𝑎

𝑑𝑑
𝑐𝑐 . 

 
What if I want to determine the probability of one variable given the joint probability of the two? 
𝑝𝑝(𝑋𝑋 ≤ 𝑥𝑥,no condition on 𝑌𝑌) = 𝐹𝐹(𝑥𝑥,∞) and for the continuous case this translates to 𝑔𝑔(𝑥𝑥) =  ∫ 𝑓𝑓(𝑥𝑥, 𝑦𝑦)𝑑𝑑𝑑𝑑∞

−∞  or 

ℎ(𝑦𝑦) =  ∫ 𝑓𝑓(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑∞
−∞ . Integrate over the unwanted variable to find the marginal density function of a random 

variable.  
 
How do I know if they’re independent? 

𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝑔𝑔(𝑥𝑥)ℎ(𝑦𝑦) 
 
Let’s get back to those expected value functions. What’s the mean or variance of two continuous random variables? 
𝐸𝐸[𝜙𝜙(𝑋𝑋,𝑌𝑌)] =  ∫ ∫ 𝜙𝜙(𝑥𝑥, 𝑦𝑦)𝑓𝑓(𝑥𝑥, 𝑦𝑦) 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑∞

−∞
∞
−∞  gives the expected value of an arbitrary function of the two continuous 

random variables. If we set 𝜙𝜙(𝑋𝑋,𝑌𝑌) = 𝑋𝑋𝑙𝑙𝑌𝑌𝑚𝑚 the expected value is updated to 𝐸𝐸[𝑋𝑋𝑙𝑙𝑌𝑌𝑚𝑚] =



∫ ∫ 𝑥𝑥𝑙𝑙𝑦𝑦𝑚𝑚𝑓𝑓(𝑥𝑥, 𝑦𝑦)𝑑𝑑𝑥𝑥𝑥𝑥𝑥𝑥∞
−∞

∞
−∞ . This means (referring to the expected values for one variable) 𝐸𝐸[𝑋𝑋𝑙𝑙𝑌𝑌𝑚𝑚] = 𝜆𝜆𝑙𝑙𝑙𝑙 or the 
𝑙𝑙𝑙𝑙th moment of 𝑋𝑋,𝑌𝑌 about the origin. To find the 𝑙𝑙𝑙𝑙th moment about the mean, 𝜙𝜙(𝑋𝑋,𝑌𝑌) = [𝑋𝑋 − 𝜆𝜆10]𝑙𝑙[𝑌𝑌 − 𝜆𝜆01]𝑚𝑚. 
This returns 𝜇𝜇𝑙𝑙𝑙𝑙 = 𝐸𝐸{[𝑋𝑋 − 𝜆𝜆10]𝑙𝑙[𝑌𝑌 − 𝜆𝜆01]𝑚𝑚}.  
 
Particular cases of 𝜇𝜇𝑙𝑙𝑙𝑙 and 𝜆𝜆𝑙𝑙𝑙𝑙 give: 
𝒍𝒍 𝒎𝒎   
0 0 𝜆𝜆00 = 1  
1 0 𝜆𝜆10 = 𝐸𝐸(𝑋𝑋) Mean of X 
0 1 𝜆𝜆01 = 𝐸𝐸(𝑌𝑌) Mean of Y 
0 0 𝜇𝜇00 = 1  
1 1 𝜇𝜇11 = 𝐸𝐸{[𝑋𝑋 − 𝐸𝐸(𝑋𝑋)][𝑌𝑌 − 𝐸𝐸(𝑋𝑋)]} Covariance of X and Y 
2 0 𝜇𝜇20 =  𝜎𝜎2(𝑋𝑋) Variance of X 
0 2 𝜇𝜇02 = 𝜎𝜎2(𝑌𝑌) Variance of Y 
   
How would I calculate the covariance? 
An example, similar to computing the variance for 1 variable: 

𝜇𝜇11 = 𝐸𝐸{[𝑋𝑋 − 𝐸𝐸(𝑋𝑋)][𝑌𝑌 − 𝐸𝐸(𝑋𝑋)]} 

= � � (𝑥𝑥 − 𝜆𝜆10)1(𝑦𝑦 − 𝜆𝜆01)1𝑓𝑓(𝑥𝑥, 𝑦𝑦)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
∞

−∞

∞

−∞
 

=  � � (𝑥𝑥𝑥𝑥 − 𝜆𝜆10)(𝑦𝑦 − 𝜆𝜆01)𝑓𝑓(𝑥𝑥, 𝑦𝑦)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
∞

−∞

∞

−∞
 

Great! Now let’s turn that into something I can use for state matrices like a matrix. 
Look at this handy-dandy variance-covariance matrix. The symmetric matrix: 

𝑃𝑃 = 𝐸𝐸 ��𝑋𝑋 − 𝐸𝐸(𝑋𝑋)
𝑌𝑌 − 𝐸𝐸(𝑌𝑌)� [𝑋𝑋 − 𝐸𝐸(𝑋𝑋) 𝑌𝑌 − 𝐸𝐸(𝑌𝑌)]� 

𝑃𝑃 = 𝐸𝐸 �
�𝑋𝑋 − 𝐸𝐸(𝑋𝑋)�2 �𝑋𝑋 − 𝐸𝐸(𝑋𝑋)��𝑌𝑌 − 𝐸𝐸(𝑌𝑌)�

�𝑋𝑋 − 𝐸𝐸(𝑋𝑋)��𝑌𝑌 − 𝐸𝐸(𝑌𝑌)� �𝑌𝑌 − 𝐸𝐸(𝑌𝑌)�2
� 

𝑃𝑃 =  �𝜎𝜎
2(𝑋𝑋) 𝜇𝜇11
𝜇𝜇11 𝜎𝜎2(𝑌𝑌)� 

The covariance of two random variables is often written in terms of a correlation coefficient, 𝜌𝜌𝑋𝑋𝑋𝑋. This coefficient 
helps us determine the correlation between 𝑋𝑋 and 𝑌𝑌. -1 or 1, negative or positive correlation, respectively. Near 0 
and there is no correlation. 

𝜌𝜌𝑋𝑋𝑋𝑋 =
𝜇𝜇11

𝜎𝜎(𝑋𝑋)𝜎𝜎(𝑌𝑌) 

The correlation coefficient is also the covariance between standardized random variables.  
 
What does a posteriori and a priori mean? 
A posteriori means given the observation vector we estimate the state vector. A priori we estimate the state vector 
prior to the observation vector.  
 


