Milestone Review Flysheet

Institution The University of Alabama

Milestone Preliminary Design Review

Vehicle Properties		
Total Length (in)	93	
Diameter (in)	5.5	
Gross Lift Off Weigh (lb)	26.87	
Airframe Material	Fiberglass	
Fin Material	Fiberglass	
Drag	0.467	

Stability Analysis		
Center of Pressure (in from nose)	64.98	
Center of Gravity (in from nose)	54.37	
Static Stability Margin	1.93 calibers	
Static Stability Margin (off launch rail)	0.47	
Thrust-to-Weight Ratio	13.77	
Rail Size and Length (in)	118	
Rail Exit Velocity	71.5	

Recovery System Properties					
	Dogue Parachute				
Manufactu	Manufacturer/Model Giant Leap Rocketry/TAC-1 (pre-owned)			(pre-owned)	
Si	Size 54				
Altitu	Altitude at Deployment (ft) 5280			80	
Velocity at Deployment (ft/s)			2.313		
Terminal Velocity (ft/s)			24.5		
Recovery Harness Material			Kevlar		
Harness Size/Thickness (in)		ss (in)	0.5		
Recovery Harness Length (ft)		gth (ft)	4.17		
Harness/Airfra	Harness/Airframe Interfaces Parachute harness will be secured to bolt on the electronics bay bulk parachute.		•		
Kinetic Enerfy	Nose Cone	Forward	Aft		
of Each Section (Ft-Ibs)	20.64	107.5	6.9		

Recovery Electonics			
Altimeter(s)/Timer(s) (Make/Model)	PerfectFlite Stratologger		
Redundancy Plan	Team will use two Stratologgers to ensure ignition of black powder charges		
Pad Stay Time (Launch Configuration)	1 hour and 30 minutes		

Motor Properties			
Motor Manufacturer	Cesaroni Technology Inc.		
Motor Designation	L805		
Max/Average Thrust (lb)	367.3		
Total Impulse (lbf-s)	6296		
Mass Before/After Burn	12.072/10.678		
Liftoff Thrust (lb)	244.1		

Ascent Analysis		
Maximum Veloxity (ft/s)	642	
Maximum Mach Number	0.58	
Maximum Acceleration (ft/s^2)	385	
Target Apogee (From Simulations)	5290	
Stable Velocity (ft/s)	62.62	
Distance to Stable Velocity (ft)	7.94	

Recovery System Properties					
	Main Parachute				
Manufactu	Manufacturer/Model Giant Leap Rocketry/TAC-1 (pre-owned)			(pre-owned)	
Si	ze		110		
Altitu	Altitude at Deployment (ft) 900			00	
Velocity at Deployment (ft/s)			24.44		
Terminal Velocity (ft/s)			12.14		
Recovery Harness Material			Kevlar		
Harness Size/Thickness (in)		0.625			
Recovery Harness Length (ft)		5.58			
Harness/Airfra	ame Interfaces	Parachute harness will be secured to eye boon the electronics bay bulk plate and the section bulk plate.		ate and the aft	
Kinetic Enerfy	Nose Cone	Forward	Aft		
of Each Section (Ft-Ibs)	20.64	26.5	1.68		

Recovery Electonics			
Rocket Locators (Make/Model)	Adafruit Ultimate GPS		
Transmitting Frequencies	900 Hz		
Black Powder Mass Drogue Chute (grams)	4		
Black Powder Mass Main Chute (grams)	4		

Milestone Review Flysheet

Institution	The University of Alabama	Milestone Preliminary Design Review
	Autonomous Ground Support Equipment	(MAV Teams Only)
	Overview	
Capture Mechanism		
	Overview	
Container Mechanism		
	Overview	
Launch Rail Mechanism	***Include Description of rail loc	king mechanism***
	Overview	
Igniter Installation Mechanism		
	Payload	
	Overview	
Payload 1	Payload 1 will be a landing hazards detection system. This system will use a camera to detect hazard	
	Overview	

	Test Plans, Status, and Results			
Ejection Charge Tests	The team plans to use ground testing of the black powder charges to ensure the charge will produce the correct pressure to eject the parachutes. The test will be a static ignition of full scale charges at the Pheonix Missile Works launch area.			
Sub-scale Test Flights	The team plans to build a sub-scale launch vehicle with a scaled payload, weight, and motor. The sub-scale will model the flight of the full scale as closely as possible. The team currently plans to launch the sub-scale rocket on November 22.			
Full-scale Test Flights	The team will test all sub-systems and components of the full scale rocket, and at least one full scale mission will be flown. Full scale flights will provide the team with data on altitude, stability, and performance of the recovery system of the rocket.			

Payload 2 will be a guided descent system. This system will use the data from the landing hazards detection system and the Raspberry Pi to control servo motors, which will in turn control the payload's parafoil.

Payload 2

Milestone Review Flysheet	Milestone	Review	Flvs	heet
---------------------------	-----------	--------	-------------	------

Institution	The University of Alabama	Milestone	Preliminary Design Review		
Additional Comments Stablity Velocity, Distance to stable velocity, and Static stabilty margin (off launch rail) were all calculated at a wind speed of					
20 mph.	istance to stable velocity, and Static stabilty i	nargin (on launch rail) were a	ili calculated at a wind speed of		