Milestone Review Flysheet

Institution The University of Alabama

Milestone Critical Design Review

Vehicle P	roperties
Total Length (in)	89
Diameter (in)	5.5
Gross Lift Off Weigh (lb)	32.2
Airframe Material	Fiberglass
Fin Material	Fiberglass
Drag Coefficient	0.467

Motor Pr	operties
Motor Manufacturer	Cesaroni Technology Inc.
Motor Designation	L3200
Max/Average Thrust (lb)	834.9 / 721.4
Total Impulse (lbf-s)	749.1
Motor Mass Before/After Burn(kg)	3.26 / 1.61
Liftoff Thrust (lb)	630

64.8
53.7
2.00 calibers
1.66 calibers
22.4
144
130.5

Ascent Analysis	
Maximum Velocity (ft/s)	723
Maximum Mach Number	0.65
Maximum Acceleration (ft/s^2)	824
Target Apogee (From Simulations)	5290
Stable Velocity (ft/s)	77.22
Distance to Stable Velocity (ft)	4.82

Re	covery Syst	em Prope	rties	
	Drogue P	arachute		
Manufactur	er/Model	Giant Leap	Rocketry	//TAC-1
Size (in)		54	
Altitude	at Deployment	: (ft)	52	90
Velocity a	t Deployment	(ft/s)	3.:	21
Termir	nal Velocity (ft/	's)	35.	.66
Recovery	/ Harness Mate	erial	Kev	/lar
Harness	Size/Thickness	(in)	0.	.5
Recovery	Harness Lengt	h (ft)	4.	17
Harness/Airfrar	ne Interfaces	secured t	e harness o an eye t tronics ba plate	oolt on
Kinetic	Nose Cone	Forward	Aft	Total
Energy of Each Section (Ft-lbs)	25.9	166.5	197.3	389.6

Re	ecovery Syste	m Properties		
	Main Par	achute		
Manufacturer	/Model	Giant Leap Ro	cketry/T	AC-1
Size (in)	11	0	
Altitud	e at Deployment	(ft)	9	00
Velocity	at Deployment (ft/s)	32	.75
Term	inal Velocity (ft/s	s)	14	.52
Recove	ery Harness Mate	rial	Ke	vlar
Harnes	s Size/Thickness	(in)	0.6	525
Recover	y Harness Length	n (ft)	5.	58
Harness/Airframe	e Interfaces	Parachute ha secured to eye electronics bay b section bu	bolts or ulk plate	the
	Nose Cone	Forward	Aft	Total
Kinetic Energy of Each Section (Ft- lbs)	4.29	27.6	32.7	64.5

Recovery I	Electronics
Altimeter(s)/Timer(s) (Make/Model)	Perfectflite Stratologger
Redundancy Plan	Team will use two altimeters to ensure ignition of black powder charges
Pad Stay Time (Launch Configuration)	1 hour and 30 minutes

Recovery E	lectronics
Rocket Locators (Make/Model)	Adafruit Ultimate GPS Breakout
Transmitting Frequencies	900 Hz
Black Powder Mass Drogue Chute (grams)	5
Black Powder Mass Main Chute (grams)	5

Milestone Review Flysheet

institution	The University of Alabama		ivillestone	Critical Design Review
		Payload		
		Overview		

	rayidau
	Overview
Payload 1	Payload 1 will be a landing hazards detection system. This system will use a camera to take images of the ground during descent and analyze these images to detect landing hazards.
	Overview
Payload 2	Payload 2 will be a guided descent system. This system will use the data from the landing hazards detection system and the Raspberry Pi to control servo motors, which will in turn control the payload's parafoil.

	Test Plans, Status, and Results
Ejection	The team plans to use ground testing of the black powder charges to ensure the charge will produce the correct pressure
Charge Tests	to eject the parachutes. The test will be a static ignition of full scale charges at the Phoenix Missile Works launch area.
Sub-scale Test Flights	The team has built a sub-scale model at .727 scale. The sub-scale motor was chosen to match the full scale flight Mach number as closely as possible. The subscale launch will occur on January 16th.
Full-scale Test Flights	The team will test all sub-systems and components of the full scale rocket, and at least one full scale mission will be flown. Full scale flights will provide the team with data on altitude, stability, and performance of the recovery system of the rocket.

Milestone Review Flysheet

Institution The University of Alabama

Milestone

Critical Design Review

Additional Comments Stability Velocity, Distance to stable velocity, and Static stability margin (off launch rail) were all calculated at a wind speed of 20 nph.
ngh.